優酷視頻內容數據天然呈現巨大的網絡結構,各類數據實體連接形成了數十億D點和百億條邊的數據量,面對巨大的數據量,傳統關系型數據庫往往難以處理和管理,圖數據結構更加貼合優酷的業務場景,圖組織使用包括D點和邊及豐富屬性圖來展現,隨著年輕化互動數據和內容數據結合,在更新場景形成單類型D點達到日更新上億的消息量。本文將分享阿里文娛開發專家遨翔、玄甫在視頻內容實時更新上的實踐,從圖譜化的全新視角,重新組織內容數據的更新,詮釋圖譜化在業務更新場景的應用。
搜索推薦系統作為在線服務,為滿足在線查詢性能要求,需要將預查詢的數據構建為索引數據,推送到異構儲存介質中提供在線查詢。這個階段主要通過 Offline/Nearline 把實時實體、離線預處理、算法加工數據進行處理更新。這里包含了算法對這些數據離線和在線的處理,不同業務域之間終數據合并(召回、排序、相關性等)。在平臺能力方面采用傳統的數倉模式即圍繞有共性資源、有共性能力方面建設,形成分層策略,將面向業務上層的數據d立出來,而這種模式在實現業務敏捷迭代、知識化、服務化特征方面已不能很好滿足需求。
| 資料獲取 | |
| 服務機器人在展館迎賓講解 |
|
| 新聞資訊 | |
| == 資訊 == | |
| » 機器人的加速度傳感器的測量方法:速度測量 | |
| » 機器人的速度傳感器:測量平移和旋轉運動的 | |
| » 機器人的位移位置傳感器:直線移動傳感器, | |
| » 機器人應用傳感器時應考慮的問題:程序設計 | |
| » 機器人的感覺順序與策略:變換,處理 | |
| » 機器人多指靈巧手的神經控制的原理:控制系 | |
| » 機器人自適應模糊控制: PID 模糊控制 | |
| » 機器人的進化控制系統:解決其學習與適應能 | |
| » 機器人的神經控制系統特性和能力:并行處理 | |
| » 機器人的學習控制系統:搜索、識別、記憶和 | |
| » 機器人的模糊控制系統:模糊化接口、知識庫 | |
| » “人工智能+制造”專項行動實施意見:10 | |
| » 機器人的專家控制系統:知識庫、推理機、控 | |
| » 智能機器人的遞階控制系統:精度隨智能降低 | |
| » 機器人的力和位置混合控制方案:主動剛性控 | |
| == 機器人推薦 == | |
服務機器人(迎賓、講解、導診...) |
|
智能消毒機器人 |
|
機器人底盤 |
![]() |